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What are Cavity-Magnon-Polaritons (CMPs)?

Ampere’s Law
Resonant Cavity produces H field, drives magnon resonance.

Cavity photons: hw.ata
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Magnons: hw,,bTh + eBtERtE

Faraday’s Law
Resonant magnons produce E fields, changes cavity resonance.

\ w., Wy, - resonant frequency of cavity and magnon
a' (a) - creation (annihilation) operators of cavity photons
bT (b) - creation (annihilation) operators of magnons

K - Kerr coefficient of magnon

« CMPs are quasi-particles generated by magnons coupled with cavity photons.

« Strong coupling between a cavity and a ferromagnetic material allows CMPs to exchange quantum information
between cavity photons and magnons.

« Potential application in quantum information processing such as data storage and data reading.

Low Power Experiments

Dispersion

Frequency response

35— CMP coupling
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Non-Linear CMP Dynamics:

The Hamiltonian of the system 1s given by:

Cavity photons Non-linear Magnons Coupling Driving field
H = h(w, — w)aTaH h(wy, — 0)b™h + KbThbTh|+|g(aTh + ab™ )|+ Q(at + a)
2K|B|? = b

Multinle |B|? solutions for laree P;
(wm—w‘I‘ZKIBIZ—U(wc—wm))2+(aw+n,8w)2 ultiple |B|” solutions for large Pip

Y - gyromagnetic ratio

N()n' line ar Magnons : lo - vacuum permeability

B, - external magnetic field

K, - first-order magnetocrystalline

If we consider ferromagnetic sphere as a macro-spin, the Hamiltonian is given by: anisotropy constant

M - saturation magnetization

UoY 2 K Vi - volume of the YIG sample
A 0 an A all are constants
H = —yB,S, + SZ A
- - dpIn projection operator on z-axis
MZ Vm ¢ _ Spi . .

A

By applying the Holstein-Primakoff transformation S,

S — btb and dropping the constant terms, it is easy
to derive the magnon Hamiltonian as following:

bbb

S

H =|hw,,bTb|+HhrK

Linear term Non-Linear term

.For low input microwave powers, the nonlinear effect 1s neglectable.

.For high input microwave powers, the foldover behavior can be observed.
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