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Abstract

We studied the spin-photon interaction in an active cavity with a voltage controlled

feedback loop at room temperature. In order to study this phenomenon, an active

cavity with A-P design was fabricated with a tunable range of Q factor from 102

to 105. In this work, we experimentally demonstrated that the coupling strength,

in this specific configuration, can be controlled by the number of feedback photons

and polaritons through tuning the bias voltage and distance, respectively. Feedback

loop is commonly used in engineering and scientific research, the emergence of active

cavity would extend the field of cavity magnon polariton. This leads to a better

understanding of the coupling between magnon and feedback cavities and provides a

new perspective for fundamental coupling in spintronics.
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1 Introduction

Light-mater interaction is a long standing topic in physics. Interaction between

light and materials give rise of lots of common phenomena such as diffraction, reflec-

tion, deflection, et cetera... These phenomena depend on permeability and permittiv-

ity of material. The interaction of these effects are weak which means that electronic

states of the medium remain same during the process [1]. When the interaction is

strong enough to alternate the electronic states of the medium, a type of quasi-particle

known as ”polariton” is generated whose behavior is the superposition properties of

photons and matter. Polariton was first theoretically predicted by Tolpygo [2] and

Huang [3] independently who had studied the interaction between the electromag-

netic field and phonon in crystals. This lead to the emergence of phonon-polariton

which involves crystal motion and light. After the discovery of polariton, this area

of research has evolved greatly over years during which different types of polaritons

were theoretically and experimentally studied [4]. For example, exciton-polariton and

plasmon-polariton. The combination of spintronics and polariton gives rise to new

fields of light-matter interaction such as magnon polariton (magnon with microwave

photon) which is based on magnetic material interacting with light [5].

1.1 Ferromagnetic Resonance and Magnon

Ferromagnetic resonance is one of the most exciting discoveries in the mid-20th

century of solid state physics. In 1935, Lev Landau and Evgeny Lifshitz first pre-

dicted microwave absorption due to the procession motion of magnetic moment in

a static magnetic field for ferromagnetic materials [6]. In late 1940s, experiments

were performed and verified by J. H. E. Griffiths who observed energy loss in high

frequency current by using a thin ferromagnetic metal [7]. Russian scientist E. K.

Zavoiskij discovered the same phenomenon through using paramagnetic salts in the

same year independently [8, 9]. Later Kittel discussed the theory on dispersion of

these Ferromagnetic Resonance(FMR) in different structures which now is known as

the ”Kittel formula” [10].

The mechanism of Ferromagnetic Resonance(FMR) is broadly similar to elec-

tron paramagnetic resonance(EPR) and nuclear magnetic resonance(NMR). The dif-

ference is that FMR probes magnetic moment resulting from unpaired electrons and

NMR probes the magnetic moment of nuclei. In modern physics research, FMR as a

spectroscopic technique that commonly studied together with microwave cavities has

become a tool of probing spin wave in spintronics and spin dynamics.
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Spin wave is formed and propagated in a magnetic material if a perturbation is

acting on local magnetic ordering [11]. Bloch first predicted spin wave [12] and later

scientists realized it was the result from collective excitations of the electron spins in

ferromagnetic materials. Today, spin wave is considered as a promising candidate for

next generation information transporting and processing [13]. Quantised spin waves,

known as magnons, are a type of quasiparticles like phonon. A fixed amount of

energy, lattice momentum and integer spin number are carried by magnons resulting

they obey Bose-Einstein statistics.

1.2 Microwave cavity and Cavity Photon

Microwave cavity, also known as resonator, is a design of certain structure that is

able to confine the electromagnetic fields in the microwave region of spectrum. Stand-

ing waves are formed in the resonator by photons bouncing back and forth between

the wall of the cavity this yield resonant peaks or absorption dips in spectrum at

certain frequencies. While the cavity is in resonance, electric and magnetic energy

is stored within the cavity and dissipated gradually due to variously damping mech-

anisms such as Ohm loss and dielectric loss [14]. Furthermore, if the cavity has an

open boundary such as in planar structures, the energy would also radiate to envi-

ronment [15]. The quality factor Q, is a dimensionless value describes how efficiently

the cavity is able to store energy. The higher Q the cavity have, the sharper the

resonant peak is on spectrum. An efficient cavity will have a long average photon

lifetime which provides a great convenience for particles to interact with each other.

Generally, high Q cavities are preferred in research.

Microwave cavities have different designs that vary from 2-D to 3-D. At room

temperature, 3-D metallic cavity often have a Q of a few thousand therefore it has been

commonly adopted as microwave cavities in research. Even though 3-D cavities give

beautiful results it faces difficulties in application such as fabricating, integrating and

manipulating [16]. Planar structure was used in this work to overcome this drawback.

For 2-D microstrip resonator, the Q factor is usually on the order of several hundred

due to its relatively high loss. Traditional passive planar cavities usually have a

Q value limit around several hundred which brings difficulties for interaction. In

principle, any structure can have resonant modes. However, the microstrip resonators

are usually designed in rectangular, split-ring or circular. Different cavity geometries

result in different boundary conditions, which would result in different solutions to

the Maxwell equations and correspond to distinct resonant frequencies, Q factors and
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field spatial distributions.

The active cavity was firstly designed for acquiring high Q cavities by integrat-

ing an feedback loop circuit on passive resonators [17]. Soon after it has found great

applications in sensitive measurements such as liquid sensing [18] and organic-vapor

sensing [19]. Apart from the high sensitive measurement, this high Q resonator pro-

vided a novel perspective for fundamental research in solid state physics especially

in spin dynamics. With the assistance of external voltage sources and an amplifying

circuit, the resonance signal with certain frequency is amplified and Q factor is in-

creased by 3 orders of magnitude (from 102 to 105) [20]. Therefore, active resonators

provide a new approach to study the light-matter coupling.

1.3 Emergence of Cavity Magnon Polaritons

The discovery of cavity-magnon-polariton(CMP) whose focus is on spin-photon

interaction provides a newly emerging sub-field [15,20–27] in light-matter interaction.

The theoretical prediction of the strong coupling between cavity photons and magnons

was made in 2010 [28] and was first experimentally demonstrated in 2013 at low

temperature [29]. Soon after, the experiment in room temperature was achieved by

coupling a YIG sphere and a 3D microwave cavity by Zhang et al [26]. In order to

illustrate the CMP system, a schematic diagram of CMP was given in Fig.1. The

coupling strength g indicates the speed of the energy exchange between photon and

magnon with dimension of s−1. γc and γm are the dispassion rate of the cavity photon

and magnon that indicate energy is lost rate. By tuning coupling and damping of the

system, CMP can reach various coupling regimes (strong coupling, weak coupling,

magnetically induced transparency and Purcell effect) [26] of which each has distinct

properties. CMP is given by coherent coupling whose definition is given by the

cooperativity greater than unity (C =
g2

γmγc
> 1) [30] which indicate energy exchange

can complete at least one cycle before the energy is damped away.

Research in CMP has lead to development of various potential practical applica-

tions such as quantum transducer that is able to coherently connect various quantum

systems [31], device that is able to precisely control and readout the information s-

tored in qubit states [32] and so on. Following the development of the CMP, our

focus is on coherent coupling between microwave photons and magnons. In previous

CMP research [26, 32], passive resonator was widely used to generate cavity photons

that couple with magnons. Combining the active cavity with magnons results expan-

sion of CMP. For instance, Yao et al reported a completely new phenomenon called
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Figure 1: Schematic diagram of Cavity Magnon Polaritons: cavity photons interact
with magnons. g is the coupling strength showing how strong is the interaction, γc
and γm is the damping rate of cavity photon and magnon which represent how fast
the energy lost from these two particles.

magnon quintuplet and observed breaking of harmonic-oscillator restriction by using

an active cavity and ferromagnetic sphere [20]. Following their work, it is important

to study the feedback effect in polariton dynamics with a feedback-coupled cavity

and determine what kind of variables effect coupling. In this work, a similar active

resonator was designed and fabricated. The target is to study the influence of the

active cavity with a feedback loop on coherent coupling in a planar structure by using

a Yttrium iron garnet(YIG) sphere.

2 Theory

2.1 Cavity mode

2.1.1 RLC circuit model

Microwave resonator in this research is made by microstrip which has a top layer

of metal to convey microwave and form cavities, a layer of dielectric substrate in

middle and a ground bottom layer. An intuitive understanding of the microwave

cavity is using its equivalent RLC circuit to model the microwave cavity photons and

magnons (shown in Fig.2).
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Figure 2: (a) A typical open-end microstrip resonator with long feed line fabricated
from print circuit board (PCB) technology. Signal is sending in from LHS and ex-
tracting out from RHS. (b) The equivalent RLC circuit of open-end microwave cavity
shown in (a).

To characterize RLC circuit, it is necessary to know the input/output of the

system. We firstly write down the frequency dependent impedances of the resistance,

inductance and capacitor:

ZR = R ZL = iLω Zc =
1

iCω
(1)

It is easy to obtain the net impendence as:

Zs = R + iωL+
1

iωC
(2)

The impendence of the RLC circuit shown in Fig.2 can be reorganized as

Zs =
(ω0 − ω) + i∆ω/2

ig/2
(3)

Where g = 1/L is the coupling strength between resonator and feed lines, ω0 =

1/
√
LC gives the resonance peak position and ∆ω = R/L is the linewidth. Also the

approximation ω + ω0 ≈ 2ω has been applied in the derivation.

In order to compare theoretical value and measurement data, we introduce the

transmission(ABCD) matrix and scattering (S parameters) matrix (see Fig.3 Two-

port network) whose definitions are given by:(
V1

I1

)
=

(
A B

C D

)(
V2

I2

)
and

(
b1

b2

)
=

(
S11 S12

S21 S22

)(
a1

a2

)
(4)

where V1, I1 are the input voltage and current applied at Port 1; whereas, V2, I2 are

the output voltage and current at Port 2. The advantage of using the transmission

matrix is that for a cascade connection of two port networks, the overall transmission
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matrix can be found by simply multiplying the transmission matrix for each individual

network as following: [
Vinput

Iinput

]
= [M1][M2] · · · [Mn]

[
Voutput

Ioutput

]
(5)

The transmission matrix of RLC resonator like Fig.2(b) is given by [33]:

[MABCD] ==

(
1 Zs

0 1

)
(6)

However the drawback of using the ABCD matrix is that it is difficult to measure mi-

crowave current and voltage. Experimentally, we measure the scattering parameters

(S parameters) directly using a vector network analyser(VNA). Relation of between

transmission matrix and scattering matrix(shown in Fig.3(b)) is given by [33]:

[S] =

[
S11 S12

S21 S22

]

=


A+B/Z0 − CZ0 −D
A+B/Z0 + CZ0 +D

2(AD −BC)

A+B/Z0 + CZ0 +D

2

A+B/Z0 + CZ0 +D

−A+B/Z0 − CZ0 +D

A+B/Z0 + CZ0 +D


(7)

The S-parameters Sij of an active or passive microwave network are the ratios of the

voltage waves emitted from port j, to the voltage waves received from port i.

Figure 3: Two port network: (a) Transmission (ABCD) matrix, V1,V2 (I1,I2) are the
voltage cross(current through) port 1(left) and port 2(right) (b) Scattering matrix
that describes the amplitude and phase difference between initial and final states
using complex values for input a1,a2 and output b1,b2.

Z0 is the impendence of the measurement instrument usually taken to be 50 Ω.
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Substituting the ABCD of our system, we can acquire the S21 parameter(transmission):

|S21| =
∣∣∣∣ igZ0

(ω0 − ω) + i(∆ω + gZ0)

∣∣∣∣ (8)

2.1.2 Classical Oscillator

Another method to characterize the photon cavity is using a classical driven

damped oscillator.

Figure 4: Damped Oscillator Model describe a dipole in electromagnetic field, a spring
connect with a mass point m that driven by a periodic force F which gives an intrinsic
resonant frequency Ω0, e is the charge carried by the dipole and E0 is the electric
field strength. Damping γ slows the motion proportion to the velocity ẋ.

Consider a linear dipole oscillates in an electromagnetic field:

E(t) = E0e
iωt (9)

Such system can be described by driven harmonic oscillation, the equation of motion

is given by:

ẍ+ γω0ẋ+ ω2
0x = feiωt (10)

where ω0 is the intrinsic oscillation frequency of the electric dipole, and f = eE0/m

is the maximum force acting on the oscillator. we assume that position of oscillator

x(t) can be described by a complex amplitude X(t) and the periodic force:

x(t) = X(t) · eiωt (11)

substituting into equation of motion we can get:

(Ẍ + 2iωẊ − ω2X) + γω0(Ẋ − iωX) + ω2X = f (12)
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In most of the cases, Ẍ and γẊ are very small quality, so we have:

2iωẊ − ω2
0X + ω2X − iγωω0X = f (13)

In order to obtain steady-state solution, we set the first derivative of the amplitude

to zero (Ẋ = 0).

X =
f

ω2 − ω2
0 + iγωω0

(14)

When the system is near resonance, we have |ω − ω0| << ω + ω0. Therefore, we can

make approximation:

ω2
0 − ω2 ≈ 2ω(ω0 − ω) (15)

So we have the approximated amplitude as :

X =
f

ω0 − ω + iγω0/2
(16)

which gives a lorentz line shape resonance. If we have a weak spring that can extract

a very small portion of energy and that has no influence on over original motion, then

we can acquire the S parameter of the system which is proportional to the amplitude

X. The solution of x may not be exactly in phase of the driving force. Thus, the

solution will have a form with additional phase shift φ can be write as X · ei(ωt+φ) .

The expression of the phase shift from Eq.14 is frequency dependent:

tan(φ(ω)) =
ωγ

ω2
0 − ω2

(17)

From this formula a difference of ±(π/2) off resonance and 0 in resonance can be

expected, the result is shown in Fig.5(c,d).

2.1.3 Cavity Photon Hamiltonian

The microwave cavity can be described by a quantum harmonic oscillator model

if we know the particle mass as m and the force constant as k. The Hamiltonian can

be write as the sum of kinetic energy and potential energy:

Ĥ =
p̂2

2m
+

1

2
kx̂2 =

p̂2

2m
+

1

2
mω2x̂2 (18)

Where x̂ is the position operator given by x̂ = x and p̂ is the momentum op-

erator given by p̂ = −ih̄ ∂
∂x

. The intrinsic angular frequency ω is given by
√
k/m

. The eigenvalue E of this system can be acquired by solving the time-independent

8



Figure 5: (a)S21 parameter of the RLC model, numerical calculation for R = 30Ω,
L = 1.0µH and C = 0.11pF . (b)S21 Phase difference of RLC model, the phase shift
in resonance is 0 and off resonance is ±π/2(c)(d) Amplitude and Phase difference
for damped oscillator model, numerical calculation for ω0 = 3GHz, γ = 0.5GHz and
Amplitude = 0.8. From the four graphs in figure, we can know that RLC circuit and
damped oscillator yield a similar result.

Schrodinger equation:

Ĥ |ψ〉 = E |ψ〉 (19)

Using ladder operator method, we define the creation operator â† and annihilation

operator â which is given by:

â =

√
mω

2h̄
(x̂+

ip̂

mω
)

â† =

√
mω

2h̄
(x̂− ip̂

mω
)

(20)
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The operators act on a quantum state |n〉 and yields:

â† |n〉 =
√
n+ 1 |n+ 1〉

â |n〉 =
√
n |n− 1〉

(21)

The Hamiltonian using the ladder operators can be rewrite as:

Ĥ = h̄ω(â†â+
1

2
) (22)

Consider the energy stored in the oscillator as the Hamiltonian of cavity photons:

Ĥmagnon = δĤ = h̄ωâ†â (23)

2.2 Magnon

2.2.1 Ferromagnetic Resonance

A material is called ferromagnetic if its spins tend to align a certain direction

spontaneously or under external field below the Curie temperature Tc. In order to

excite (FMR), the magnetization of the material is aligned with an externally applied

direct current magnetic field, and a microwave frequency field is then used to drive

magnetization precession. This can be explained by the spin polarization, arising

due to the exchange interaction within the atomic lattice making it energetically

favourable for the spins of neighboring atoms to align, which will result in a local

non-zero magnetization.

A mathematical description of FMR usually begin with damping free Landau-

Lifshitz equation:
d ~M

dt
= −γ( ~M × ~Heff) (24)

Where Heff is the effective internal field that felt by magnetization ~M and γ is the

electron gyromagnetic ratio. Heff contains two parts, one from the static internal

field due to the electromagnet and the other from the periodic oscillating microwave

magnetic field:
~Heff = ~Hstatic + ~h0e

iωt (25)

Based on phenological facts we introduce a damping term that produces a torque

forces the magnetization move inward and reduce the cone angle of the precession.

10



Figure 6: Schematic diagram for ferromagnetic resonance characterized by LLG e-
quation. The magnetization M (red arrow) precess alone the effective internal field

Heff (blue arrow). Where the damping is given by the M× dM
dt

(yellow arrow) and the

velocity of the precession movement is
dM

dt
(purple arrow). The ~M would eventually

align towards the z direction follows the spiral curve if without the microwave field.

With damping the Landau-Lifshitz equation becomes:

d ~M

dt
= −γ( ~M × ~Heff) + λ(

( ~H · ~M) ~M

M2
−Heff) (26)

where λ is the Landau-Lifshitz damping parameter, and has the dimensions of frequency(s−1).

By using the BAC−CAB rule ~A× ( ~B × ~C) = ~B(~C · ~A) + ~C( ~A · ~B), we have

d ~M

dt
= −γ( ~M × ~Heff)− λ(

~M × ( ~M × ~Heff)

M2
) (27)

Whereα is the Gilbert damping parameter defined as:

α =
λ

γM
(28)

So we have:
d ~M

dt
= −γ( ~M × ~Heff −

αγ

M
( ~M × ( ~M × ~Heff))) (29)

we can then cross the

γ ~M × ( ~M × ~Heff) = − ~M × d ~M

dt
+ αγM( ~M × ~Heff) (30)
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We have acquired the Landau-Lifshitz-Gilbert (LLG) equation that commonly used

d ~M

dt
= −γ( ~M × ~Heff)(1 + α2) +

α

M
( ~M ×

~M

dt
) (31)

The LLG equation is a non-linear partial differential equation, for the cases when

the procession angle is small, it can be approximated by linear analytical solutions.

However, when procession angle is large enough by increasing the power of microwave,

non-linear effect would appear. The α2 term is far smaller than one (α� 1), therefore,

this term is neglected in most cases. From the Eq.31 we can derive reaction of

magnetization under a periodically changing magnetic field. The first term of the

LLG equation characterizes the torque induced by the applied static magnetic field,

the analog in a precessing top is the torque exerted by gravity. The second term

produces an inward force that tend to reduce the rotation angle which results in the

dispassion of this procession motion (see Fig.6). In experiment, if the torque induced

by the magnetic field of the microwave cancels the damping term, we see a strong

absorption in transmission spectrum.

Suppose the static external field towards Z direction has a value hext and mi-

crowave only acts on x-y plane, the effective internal magnetic field from Eq.25 and

internal magnetization can be write as below:

~Hext = [hxe
iωt, hye

iωt, h0 + hze
iωt]

~M = [mxe
iωt,mye

iωt,m0]
(32)

Internal fields will not be the same as the externally applied fields ~Hext = (hex, hey, he0)

but can be related to the external field through the demagnetization factors ~n =

(nx, ny, nz), which depend on the sample geometry and are taken to be uniform in a

given direction. Therefore, the external field has a following relation with magneti-

zation of sample:
~Hext = ~heff − ~n · ~M (33)

Consider the damping free case in Eq.24, the left hand side become:

−γ ~M× ~Heff = −γ

 x̂ ŷ ẑ

mxe
iωt mye

iωt m0

hxe
iωt hye

iωt h0 + hze
iωt

 = −γeiωt

myh0 −m0hy +myhze
iωt

m0hx −mxh0 −mxhze
iωt

(mxhy − hxmy)e
iωt


(34)

In this case, mx,my and hx, hy are usually small quantity compare to m0 and h0,
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therefore, any two of these product is approximately zero. and the right hand side is

easy to obtain:

d ~M

dt
= iωeiωt[mx,my, 0] (35)

Now we acquire two equations by using approximations:

−γ(he0 +m0(ny − nz))my + iωmx = 0

−γ(he0 +m0(nz − ny))mx + iωmy = 0
(36)

to rewrite in matrix form we have:(
−iω −γ(he0 +m0(ny − nz))

−γ(he0 +m0(nz − ny)) −iω

)(
mx

my

)
=

(
0

0

)
(37)

where the ny and nx are defined as hy/mx and hx/mx, respectively. Using the deter-

minant of matrix we can derive the dispersion relation:

ω2 − γ2(he0 +m0(ny − nz))(he0 +m0(nx − nz)) = 0 (38)

For a spherical sample, the demagnetization factors are given as nx = ny = nz due to

the symmetric property. Therefore, we have:

ω = γhe0 (39)

We have proved the dispersion relation of a spherical sample is linear as with respect

to the external magnetic field.

2.2.2 Collective Spin Hamiltonian

Suppose the ground state of the ensemble of identical two-level atoms are ex-

panded by a set of 2N orthogonal states such as |g〉1 |g〉2 ... |g〉N , where N is the total

number of atoms. The operator Ŝ for collective spin that represent the internal state

of N atoms is:

Ŝi =
1

2

N∑
n=1

σni (i = x, y, z) (40)

While σ± is the pauli matrices that describe a single 1
2

spin which obeys the

following anti-commutation relation:
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Figure 7: Energy levels of a collective spin system with N total spins (left) and the
energy levels for magnons due to collective excitation of spins (right). The operator
Ŝ+ and Ŝ− act on the spin projection on z axis and ĉ+ and ĉ− act on energy level of
magnons.

{
σi, σ

†
i

}
= 1{

Ŝi, Ŝ
†
i

}
= 0

(41)

The Pauli spin operator is said to be ”fermionic” and follows the Fermi–Dirac statistics

and the collective spin operator is called ”bosonic” and follows Bose–Einstein statistics

because of the difference. This also explains the reason why electrons are fermions

but magnons that formed by electrons are bosons. Here we show the proof of why.

The collective operators are given as:

Ŝ2 |S,N〉 = S(S + 1) |S,N〉

Ŝz |S,N〉 = N |S,N〉

Ŝ+ |S,N〉 =
√

(S +N + 1)(S −N) |S,N + 1〉

(42)

|S,N〉 represents the collective spin eigenstate of Ŝ2 and Ŝz. The Hamiltonian

of a insulating 1-D spin chain is given by Heisenberg model:

Ĥm = −gµB
N∑
j

B̂Ŝj − J
N∑
j

Ŝj · Ŝj+1 (43)
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Where µB = eh̄/mc is the atomic moments, g ≈ 2 is the gyromagnetic ratio and

J is the ferromagnetic exchange constant. B̂ is magnetic field usually assumed to be

in the ẑ direction. It is clear that the system can minimize its energy by having all

the spins ~S align along the ẑ direction at T = 0. To solve Ĥ at T > 0, we can express

the Heisenberg operators Ŝ+ and Ŝ− in terms of bosonic operators ĉi and ĉ†i , by using

the Holstein-Primakoff transformation:

Ŝ+
i = Ŝxi + iŜyi =

√
2S(1− ĉ†i ĉi

2S
)1/2ĉi ≈

√
2Sĉi

Ŝ−i = Ŝxi − iŜ
y
i = ĉ†i

√
2S(1− ĉ†i ĉi

2S
)1/2 ≈ ĉ†i

√
2S

Ŝzi = S − ĉ†i ĉi

(44)

We have used the approximation of ĉ†i ĉi = N << 2S which means the procession

angle of the spin is very small. Substituting the Holstein-Primakoff transformation

into the Heisenberg model, the Hamiltonian of collective spin system can be rewrite

as:

Ĥm = −gµB
N∑
j

B̂Ŝj − J
N∑
j

(Ŝxj Ŝ
x
j+1 + Ŝyj Ŝ

y
j+1 + Ŝzj Ŝ

z
j+1)

= −gµBNBzS − JNS2 − JS
N∑
j

[ĉj ĉ
†
j+1 + ĉ+

j ĉj+1 − 2ĉ†j ĉj]

(45)

If we preform a Fourier transformation on the position space to momentum space, this

means that the procession of local spin can be regard as the superposition of collective

excitations of all spins. Applying the periodic boundary condition K = 2bπ/N . The

Hamiltonian can be write as:

Ĥm = −gµBNBzS − JNS2 − 2JSK2
∑
k

â+
k â
−
k (46)

Magnon result from collective excitation of spin wave. We can extract the Hamilto-

nian from the spin-wave(spin ensembles):

Ĥmagnon = h̄
∑
k

ωkâ
†â (47)
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2.3 Cavity Magnon Polariton

2.3.1 Coupled Oscillators

Figure 8: The coupled oscillator model, with x1,x2 representing the position and
ωc,ωm as the intrinsic frequencies of the two oscillators. The damping terms α and β
are depend on the spring loss of each oscillator. The coupling term κ is induced by
the spring between two cavities.

Consider two damped spring oscillators with intrinsic frequency ωc, ωm (rep-

resenting the cavity and magnon) coupled by a spring in between with a coupling

strength κ. The driving force is only acting on the cavity oscillator because the mi-

crowave only excite the photon cavity. The equations of motion of coupled oscillators

are easy to obtain as:

ẍ1 + αωcẋ1 + ω2
cx1 + κω2

cx2 = feiωt

ẍ2 + βωmẋ2 + ω2
mx2 + κω2

cx1 = 0
(48)

Where x1 and x2 are the position of the oscillator 1 and 2, respectively, and have

the solution form of Aeiωt. The subscript c and m represent the amplitude of cavity

mode and magnon mode. α and β are used to represent the damping parameter of

the photon mode and magnon mode. We can rewrite the equation of motion in a

matrix form:(
ω2 − ω2

c + iωcωα −κω2
c

−κω2
c ω2 − ω2

m + iωωmβ

)(
Ac

Am

)
=

(
feiωt

0

)
(49)

Where the feiωt term is the driving force acting on the cavity oscillator which rep-

resent the microwave sending to the photon cavity. The diagonal terms represent

resonance of the cavity photons and magnon while the off-diagonal terms describe
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the coupling between them. It can be obviously seen that in the limit of coupling ter-

m equals to zero, matrix model retards to two independent equations of motion that

describe the cavity mode with a driving force and magnon modes without coupling.

Two complex roots can be obtained by solving the eigenvalue problems of this

two-by-two matrix. The real parts give the anti-crossing dispersion relation and the

imaginary parts give the linewidth exchange of the two modes. The two results can be

used to explain the experiment data in CMP system which shows the Rabi frequency

and linewidth exchange between two modes.

Eigenvalue of ω is given by the characteristic polynomial of the matrix:

det([M ]) = (ω2 − ω2
c + iωcωα)(ω2 − ω2

m + iωωmβ)− κ2ω4
c = 0 (50)

Assuming that the dispassion rates are usually far small than the resonant fre-

quency (α, β << 1) and considering the cases near resonance and near coupling

point(ω ≈ ωc ≈ ωm), we can use the approximation of ω+ωc ≈ 2ωc and ω+ωm ≈ 2ωc.

Eigenvalue of ω is given by the characteristic polynomial:

(ω − ωc)(ω − ωm) · 4ω2
c − κ2ω4

c = 0 (51)

We can eliminate the 4ω2
c term by dividing it at both sides and expand the bracket

to get:

ω2 − ω(ωc + ωm) + ωcωm −
κ2ω2

4
= 0 (52)

The roots which are eigenvalues can be obtained by using quadratic formula:

ω± =
(ωc + ωm)±

√
(ωc − ωm)2 + κ2ω2

c

2
(53)

Where we have used detune as ∆ = ωc − ωm and Ω =
√

(ωc − ωm)2 + κ2ω2
c . By

takeing the damping into consideration, solution of the eigenvalues ω± gives resonant

frequency anti-crossing (real part) and linewidth exchange (imaginary part) behaviors

for CMP.

2.3.2 Quantum Hamiltonian

Consider a collective spin system mentioned in section 2.2.2 interacting with

cavity photons. The Hamiltonian for a system of N two-level atoms of intrinsic
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Figure 9: A sketch of spin-photon interaction. The sphere with an arrow at center is
the collective spin system that has simplified as a giant spin. Photons between two
mirrors forms standing waves that exchange energy with these spins.

frequency ω0 interacting with a single mode cavity mode of frequency ωc is

H = h̄ωm
∑
i

Szi + h̄ωca
†a+

∑
i

h̄g(S†i a+ a†Si) (54)

where g is the coupling constant between the collective spin and cavity mode with

the annihilation and creation operators a and a†. The Hamiltonian can be simplified

as:

H = h̄ωmS
z + h̄ωca

†a+ h̄g(S†a+ a†Si) (55)

The Hamiltonian matrix can be acquired through following, in which case the

ground state is |G〉 = |N,−N
2
, 0〉 and here we use |1〉 = |N,−N

2
, 1〉 and |2〉 =

|N,−N
2

+ 1, 1〉 as the degenerated excited states near ωc = ωm, the matrix elements

are given as Ĥij = 〈i| Ĥ |j〉.

Ĥ =

(
H11 H12

H21 H22

)
(56)

where we have

H11 = 〈1|Ĥ|1〉 = h̄ωm(−N
2

) + h̄ωc

H22 = 〈2|Ĥ|2〉 = h̄ωm(−N
2

+ 1)

H12 = H21 = 〈1|Ĥ|2〉 = −
√
Nh̄g
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Then the Hamiltonian matrix become:

H =

(
−N

2
h̄ωm + hωc −

√
Nh̄g

−
√
Nh̄g (−N

2
+1)h̄ωm

)
(57)

Solving the characterize polynomial would give the eigenvalues which correspond the

energy of CMP:

E± =
1

2
((h̄ωm(−N + 1) + h̄ωc)±

1

2
h̄
√

(ωc − ωm)2 + 4Ng2 (58)

Use Ω =
√

(ωc − ωm)2/4 +Ng2 as the generalized Rabi frequency, Ω0 =
√
Ng2 as

the Rabi frequency and detune ∆ = ωm − ωc. The energy can be rewrite as:

E± = h̄[(−N
2

+ 1)ωm −
∆

2
± Ω] (59)

Solving normalized eigenvectors which are given as:

~x+ =

(
cos(θ)

sin(θ)

)
~x− =

(
−sin(θ)

cos(θ)

)
(60)

with

tan(θ) =
Ω + ∆/2

Ω0

sin(θ) =

√
Ω + ∆/2

2Ω

cos(θ) =

√
Ω−∆/2

2Ω

(61)

As you may notice, the result is very similar to the coupled oscillators model,

in this quantum model, the damping effect is not considered. By constructing the

damping Hamiltonian which has the same form of classical coupled oscillators we

can get a similar result with the only difference is the definition of coupling strength

and resonance for both magnons and cavity photons. If we consider the difference

as different explanations on CMP coupling, the classical model is equivalent to this

quantum model. Moreover, the eigenvector we solved in Eq.60 of mode |ψ+〉 and |ψ−〉
indicate that in-phase resonance have a higher energy and out-of-phase corresponds to

lower energy in Fig.10(c)(d). As for detune equals zero (∆ = 0), we have a frequency

difference as 2Ω0 = 2
√

4Ng2, which is known as the Rabi frequency
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Figure 10: The properties of matrix model of CMP: (a) Dispersion relation with
anti-crossing behavior. The center gap determine the coupling strength g at ∆ = 0.
(b) Linewidth exchange of the two modes. As the linewidth evolves with magnetic
field, one mode exchanged its linewidth with another. The two modes have a equal
linewidth at ∆ = 0. (c) Eigenvector for mode+ (Eq.60 first term) plotted as a function
of detune. where x1+, x2+ are vector elements in ~x+ = (x1+, x2+). System oscillates
in phase for higher energy mode. (d) Eigenvector for mode- (Eq.60 second term)
plotted as a function of detune. x1−, x2− are vector elements in ~x− = (x1−, x2−). The
system oscillates out of phase for lower energy mode.

In order to change the magnon-photon basis to CMP basis, we can diagonalize

the Hamiltonian matrix:

Ĥ =

(
h̄ω+ 0

0 h̄ω−

)
(62)

The eigenstates of the CMP system become as |ψ+〉 and |ψ−〉, and the corresponding

eigenfrequencies are ω± = ωc +
∆

2
± Ω. Then we have a new set of creation and
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annihilation operators of CMP.

m̂+
± |G; 0〉 = |ψ±〉

m̂−± |ψ±〉 = |G; 0〉
(63)

And now the eigenstates becomes:

|E; 0〉 = cos(θ) |ψ+〉+ sin(θ) |ψ−〉

|G; 1〉 = sin(θ) |ψ+〉+ cos(θ) |ψ−〉
(64)

This diagonalization technique is a purely mathematical treatment on CMP in which

the spin-photon basis (|N
2
− N

2
; 0〉 , |N

2
− N

2
; 1〉 , |N

2
− N

2
+ 1; 0〉) was changed to CMP

basis (|G〉 , |ψ+〉 , |ψ−〉). These two basis describes the CMP equally well, however, the

CMP basis will be convenient when we take active cavity photons into consideration.

2.3.3 Cavity Magnon Quintuplet

In this research, the mode of the active cavity was carefully designed to have the

same frequency as the passive cavity. An additional coupling term between magnon

and feedback photons appears because the presence of active cavity. Therefore, the

Hamiltonian of the A-P-M devices is given by:

H = h̄ω0m
z + h̄ωcp̂

†p̂+ ΩPM(m̂+p̂+ p̂†m̂−) + h̄ωcâ
†â+ ΩAPM(m̂+â+ â+m̂) (65)

Where p̂† and p̂ are the creation and annihilation operators for P-cavity mode, â†

and â describe the feedback photon of the A-cavity. Notice that ΩPM and ΩAPM are

coupling strength for P-M coupling and A-P-M coupling, respectively. In this case,

we consider the collective spin state |(N
2
,−N

2
+m)〉 that involves m spin excitations,

now the two states |(N
2
,−N

2
+m); 0〉 and |(N

2
,−N

2
+m− 1); 1〉 exchange energy with

each other. The coupling between the active photon cavity and the magnon is given

by:

ΩAPM =
1

m
〈N

2
,−N

2
+m; 0| g0(m̂+â+ â+m̂) |N

2
,−N

2
+m− 1; 1〉

=

√
N −m+ 1

m
g0

(66)

Where g0 is the vacuum Rabi frequency of a single spin interact with cavity photons.

In Eq.66, we treat this system with N spins and m spin excitations as a quantum-
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mechanical system. In the limit of linear spin dynamic regime with m << N , the

coupling strength becomes

√
N

m
g0 ≈

Ω0√
m

. Because m spin excitations coupled with

the feedback cavity photons, these dynamic effects the coupling strength changes with

the number of feedback photons. Transfer the spin-photon basis to CMP basis, the

Hamiltonian for the A-P-M device can be rewrite as:

Ĥ

h̄
= ω+m̂

z
+ + ω−m̂

z
− + ωcâ

†â+ ΩAPM(m̂+â+ â+m̂) (67)

Recall that the transferred states are from the superposition of the two degenerated

states follows relation |ψ±〉 = c± |E; 0〉 ± c∓ |G, 1〉 where c+ =
√

(Ω + ∆/2)/2Ω and

c− =
√

(Ω−∆/2)/2Ω represent the amplitude of two excited states in CMP system

with Ω =
√

Ω2
0 + (∆/2)2. Collective excitations leads to the CMP modes appearing

at ω± = ωc + ∆/2± Ω in CMP basis, and it is easy to get:

|E; 0〉 = c+ |ψ+〉+ c− |ψ−〉

|G; 1〉 = c− |ψ−〉 − c+ |ψ+〉
(68)

Substitute this into Eq.65 to get a set of new operators for |ψ±〉:

m̂+ = |E; 0〉 〈G; 0| = c+ |ψ+〉 〈G; 0|+ c− |ψ−〉 〈G; 0|

m̂− = |G; 0〉 〈E; 0| = c+ |G; 0〉 〈ψ+|+ c− |G; 0〉 〈ψ−|
(69)

where m̂+ excites the system from ground state to |ψ+〉 while m̂− excites system from

ground state to |ψ−〉. By using the new set operators, we can reorganize the coupling

term in Eq.67:

m̂+â+ â†m̂− = c+(m̂+
+â+ â†m̂−+) + c−(m̂+

− + â†m̂−−) (70)

Therefore, Hamiltonian of A-P-M device in the CMP space that defined by two eigen-

states of CMP can be acquired by substitute Eq.70 into Eq.67:

Ĥ

h̄
= ω+m̂

z
+ + ω−m̂

z
− + ωcâ

†â+
c+Ω0√
m

(m̂+
+â+ â†m̂−+) +

c−Ω0√
m

(m̂+
−â+ â†m̂−−) (71)

First we consider |ψ+〉 and |G〉 couples with active cavity energy level |n〉, there

are two sets of degenerated states we need to consider. We note |1e〉 = |ψ+, n〉,
|2e〉 = |G, n+ 1〉 and |1g〉 = |G, n〉, |2g〉 = |ψ+, n− 1〉 as the degenerate states

in excited state and ground states (see Fig.11) ,respectively. Then we apply the
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same trick in section 2.3.2 where the Eq.56 become two sets. Because this scenario

only involves |ψ+〉, we only need to consider the first coupling term. Hence, for

Ĥ+ =
c+Ω0√
m

(m̂+
+â+ â†m̂−+) it is easy to find that:

H11g = H22g = H11e = H22e = 0 for diagonal term

H21g = H21g =
c+Ω0

√
n√

m
= c+Ω0f for off-diagonal term

H21e = H21e =
c+Ω0

√
n+ 1√
m

≈ c+Ω0f

(72)

Here we have defined a feedback factor f by using the n and m, where n is the

energy level of the feedback cavity given by n = ââ† :

f =

√
n

m
(73)

The matrix Hamiltonian for |ψ+〉 and |G〉 states for CMP and feedback photons

are given by:

[Ĥg+] =

(
nωc c+Ω0f

c+Ω0f ω+ + (n− 1)ωc

)
[Ĥe+] =

(
ω+ + nωc c+Ω0f

c+Ω0f (n+ 1)ωc

)
(74)

Solving the eigenvalue we found two sets of energy splitting, one for ground state and

the other for excited state:

Êg+ = (n− 1

2
)h̄ωc +

1

2
h̄ω+ ±

h̄

2

√
Ω +

∆

2
)2 +

2(fΩ0)2(Ω + ∆/2)

Ω

Êe+ = (n+
1

2
)h̄ωc +

1

2
h̄ω+ ±

h̄

2

√
Ω +

∆

2
)2 +

2(fΩ0)2(Ω + ∆/2)

Ω

(75)

If we perform the same trick on |ψ−〉 state of CMP we can retrieve the set of solution

for Ĥ− and Êg−, Êe−.

Êg− = (n− 1

2
)h̄ωc +

1

2
h̄ω+ ±

h̄

2

√
Ω− ∆

2
)2 +

2(fΩ0)2(Ω−∆/2)

Ω

Êe− = (n+
1

2
)h̄ωc +

1

2
h̄ω+ ±

h̄

2

√
Ω− ∆

2
)2 +

2(fΩ0)2(Ω−∆/2)

Ω

(76)

From the energy level diagram (shown in Fig.11) it is easy to know the there are eight
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possible emissions in which four have exactly same energy. This energy splitting gives

five CMP modes (ωc, ωc ± Ω+ ,ωc ± Ω−) on emission spectrum which is named as

”Cavity Magnon Quintuplet”, when ∆ = 0 we can observe a ”Magnon Triplet” due

to Ω+ = Ω−. The Rabi frequencies of these CMP system is obtained as:

Ω± =

√
(Ω± ∆

2
)2 +

2(fΩ0)2(Ω± ∆
2

)

Ω
(77)

The Rabi frequency Ω± is related with a factor
√
m (in f) in denominator that

relates with the number of CMPs in this system and a factor in
√
n in numerator that

relates with the number of feedback photons that can be controlled by voltage. Based

on these relations, there are two approaches to tune the feedback factor f . One way

is change the value of m, the other way is change the number of feedback photons.

Figure 11: Energy level split of the system (a) Sketch of energy levels for normal
anti-crossing, on the left is the energy level without interaction at ∆ = 0 and on
the right is the energy splitting due to coupling. (b) Schematic of energy levels for
A-P-M devices. Four red arrow corresponds to the decays with same energy h̄ωc. At
∆ = 0, they produce the magnon triplet with Ω+ = Ω−. At ∆ 6= 0, they produce the
magnon quintuplet with Ω+ 6= Ω−
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3 Experiment Methods

As described previously, the generation of CMP is being extensively investigated

and has many potential practical applications [15,20,22–27]. It has been demonstrat-

ed that this coupling offers a promising approach to develop long-lifetime broadband,

multi-mode quantum memories [31], quantum repeaters [31] and quantum transducers

that could coherently exchange information between different quantum systems [32].

However, the previous experiment performed to demonstrate CMP has limitations in

terms of adapting them into practical applications. Cavity with sealed conducting

walls that create an ideal boundary condition for resonance which have relative low

loss and produce a high Q factor. This usually means they require complex mechan-

ical operates to change the position of magnon or samples [26] in order to vary the

properties of the system. Therefore, development of an active planar tunable cavity

whose dispassion rate and coupling strength can be easily and continuously tuned

would bring great conveniences and a new perspective to study CMP. Such a cav-

ity would also help in easier integration of this photon-magnon coupling system to

on-chip devices for advanced spintronics applications.

3.1 Cavity Design

A very important parameter of a resonator is its quality factor Q. It can be

defined as the ratio of the energy stored in the resonator and the energy required to

maintain a constant amplitude of resonance under the resonant frequency ω0 :

Q = 2π × Energy Stored

Energy loss per cycle
=

ω0

∆ω
(78)

Where ∆ω is the full width at half maximum(FWHM) or the resonant linewidth of the

resonance, and this argument is only true when the Q factor is large enough meaning

the resonator become less damped. Q factor is simply a measure of resonator loss.

3.1.1 Microstrip resonator cavity

Microstrip resonators are a kind of electric circuits fabricated on PCB board to

convey microwave frequency signals. It consists of a conducting strip separated from

a ground plane by a dielectric layer known as the substrate. There are four common

designs for microstrip cavity that shown in shown in Fig.12.
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Figure 12: (a-d) Four common designs of microstrip resonator with (a) Open-end
resonator. (b) Stub resonator.(c) Ring resonator. (d) Dielectric resonator with the
square object (blue) as dielectric. (e) modified open-end resonator was chosen as the
active photon cavity. (f) A-P resonator design we used in this experiment, with a
amplifying circuit integrated in the top which formed a feedback loop in this case.

The Open-end resonator, Stub resonator(also known as cut-wire), ring resonator

and dielectric resonator are the four common designs of microwave cavities. The

resonator condition is given as following:

L = n · (1

2
) · λg; n = 1, 2, 3... For Open-end resonator

L = n · (1

4
) · λg; n = 1, 2, 3... For open stub resonator

2πR = n · λg; n = 1, 2, 3... For Ring resonator

Where λg is the wavelength that relate to resonant frequency and effective dielectric

constant. For open-end and ring resonator, the transmission spectra have peaks

because signal can be transmitted if it is in resonance. The microwave would be

blocked because the metal part is not directly connected while off-resonance. For

stub resonator, a dip will occur near resonance because the reflected wave from the

end stub cancels incoming wave and transparent for microwave while off resonance.
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3.1.2 Feedback cavity

The resonator design in our study is open-end resonator with a relatively long feed

length. The design of ”Ω” shaped resonator brings a great convenience to integrate

the amplifying circuit of the feedback loop. The structure of the feedback cavity is

schematically shown in Fig.13. We first use a planar passive cavity (P) with a mode

frequency ωc to couple photons with the magnons (M) in a ferromagnetic insulator

YIG. This ”P-M” design is used in most of the previous work. The key innovation

of this experiment is the design and implementation of an active cavity (A) which

contains a microwave amplifier with bias voltage (V) controlled gain (Gn). The two

cavities (A and P) are carefully designed to have the same mode frequency. This kind

of cavity setup is called A-P-M design(system).

Figure 13: A-P-M device configuration, the green lines (marked with Port 1 and Port
2) are feed lines that connect to VNA. Blue part marked with ”P” is the passive
cavity while letter ”A” colored red is the active cavity with a amplifying circuit in
orange with a triangle. A YIG sphere marked ”M” in purple was placed above the P
cavity. Bright blue part with ”V” is the voltage source that supply the bias voltage
for amplifying circuit. The magnetic field points to x direction.

As shown in Figure.13, the geometry of the active microstrip cavity has a length

L = 5.0cm, width W = 3.0cm and thickness T = 1.55mm.

3.2 Experiment Setup

The main components of the measurement setup are a Agilent N5230C vector

network analyser(VNA) to measure the transmission and reflection of the two port

system, an active cavity fabricated from RT/duroid 5880 Laminates boards with
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dielectric constant 2.20 and a loss tangent 0.0009, two KORAD KA3005D digital-

control DC power supplies that provide the bias voltage for the feedback loop, a

YIG sphere with 1.0 mm diameter as the collective spin system for interaction, a

3-D stage with a sample holder that can change the position of the YIG sphere, and

an electromagnet provide the static magnetic field. The general setup is shown in

Figure.14.

Figure 14: Experiment setup. A-P cavity was placed between two electromagnets
(marked N red and S blue) and fixed. Magnon (1mm diameter YIG sphere) was
placed in a sample holder made by Teflon which is connected to a X-Y-Z stage.
Two feed lines were connected to Vector Network Analyser which can measure the
transmission S21 directly and the voltage source provides the bias voltage for active
cavity.

The static magnetic field to magnetize the YIG sphere is provided by an electro-

magnet with a Helmholtz coil, a uniformly distributed is formed near the center of

the coil cylinder. Certain ferromagnetic material with a high magnetic permeability

was placed in center of the coil in order to enhance the magnetic field. Vector Net-

work Analyser(VNA) is a type of instruments that can measure network parameters

of electrical network. VNA is commonly used in measuring S-parameters to acquire

the reflectance and transmission which can characterize the desired systems. Major

contents in the VNA circuit are a microwave signal generator, a test set and a re-
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ceiver. Two power supplies were used to provide bias voltage for the transistor in

feedback circuit. The X-Y-Z stage we used to change the position of the YIG sphere

is from ATAGO optical works CO.LTD connect with a sample holder made by teflon.

The data collection was automated by LabVIEW programs and data analysis is in

MATLAB.

4 Experiment Results

In this section, we present experiment results which were divided into three parts.

First we characterize the properties of active cavity by setting the magnetic field equal

to zero. Second the YIG sphere was set to a fixed position. By tuning the voltage, the

coupling regime and the coupling strength of CMP can be controlled. Third we set

the voltage to 7V (the transistor is fully functional under that voltage) and tune the

position of the YIG sphere. The transmission S21 of this system using input-output

theory is given by [26]:

|S21| =

∣∣∣∣∣∣∣∣∣∣∣
A · κ/2

ω − ωc + i
γc
2
− g2

ω − ωm + i
γm
2

∣∣∣∣∣∣∣∣∣∣∣
(79)

Where g, γc and γm has the same definition as in Fig.1. A is the amplitude of the

resonance, and κ is the coupling constant result from port 1 and 2. This expression

of S21 is used to fit the experiment spectra.

4.1 Characterize Active cavity

First the properties of active cavity was determined and shown in Fig.15. The

experiment setup is the same as Fig.14 with magnetic field turned off (H field =

0 Gs). By sweeping the bias voltage on feedback loop from 0 to 7 V, a spectrum

mapping is shown in Fig.15(a), there is a turning point that we call ”turn on” point

of the active cavity near 2.4V above which voltage the amplify will be triggered on.

The Q factor that calculated from fitting lorentz lineshape of the spectra can reach

up to 105 and a jump near 2.4V is observed. The existence of the ”turn on” point is

believed result from the properties of PN junction of transistor in feedback loop. S21

is greater than one shown in Fig.15(e) which means the output is stronger than input

because microwave source in VNA is not only energy source but also the external
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Figure 15: The properties of active cavity: (a) spectrum mapping of the active cavity
as function of applied voltage on feedback circuit, a turn-on point can be clearly seen
on the mapping. (b) The Q factor v.s. bias voltage which increased almost 3 order of
magnitude, data acquired by using spectrum fitting.(c)(d) Typical spectrum(markers)
and fitting results(black lines) at bias voltage equal to 0V and 7V, respectively. (e)
Gain of the amplifying circuit v.s. voltage.

voltage source of feedback loop. It is reasonable that small signal with certain narrow

band frequency is amplified and re-injected into system. Two typical spectrums and

their fitting was given in Fig.15(c)(d), from fit curve the Q factor was determined to

be Q = 18 at V=0 V and Q = 1.32 × 105 at V = 7.0 V which indicate the active

cavity we fabricated has the capability to achieve very high Q resonance and have a

relative large tuneable range. Gain of the amplifying circuit was calculated by using

the maximum signal strength of different bias voltage over the signal strength at V

= 0 V. As we can see, the gain has approximately a linear relation as a function of

applied voltage after the amplifying circuit being turned on:

Gn = (5.75 · V − 8.40)× 104 (80)

Because of these properties, we can tune the damping of the microwave cavity by

simply tuning the bias voltage.
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4.2 Magnetically Induced Transparency

Figure 16: The waterfall plot of MIT, magnetic field is increasing from bottom to
top. A sharp FMR passing through a wide cavity mode and creating a ”transparent”
window near resonance.

Magnetically induced transparency(MIT) which is the magnetic analog of the

electromagnetically induced transparency(EIT). To achieve this regime, the damping

of the microwave photon cavity needs to be dominates(κm < g < κa) and the avoid-

ed crossing feature in the measured spectrum disappeared. A medium transparent

window result from FMR passing through the wide cavity mode can be seen from

spectrum as presented in the waterfall plot shown in Fig.16.

In this experiment, the feedback bias voltage was set to zero so that there is

no signal being amplified. By sweeping the external magnetic field, an transparent

window passes through the broad microwave cavity resonance can be seen on spectrum
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mapping in Fig.17(a). From the measured data, we first determined the dispersion

in Fig.17(b) and linewidth exchanges in Fig.17(d), the markers are fitting results and

curves are matrix model calculation. The corresponding dissipation rates and the

coupling strength are fitted at detune equal to zero as γa/2π = 121.2 MHz, γm/2π =

0.85 MHz and g/2π = 6.46 MHz shown in Fig.17(c) , corresponding to a cooperativity

value of C = (g/γa)(g/γm) = 0.4 which indicate this is not a coherent interaction for

this specific device configuration.

Figure 17: The fitting plot of MIT (a) Spectrum mapping of MIT (b) Resonant peak
from fitting result(marks) and matrix calculation(solid lines). (c) Spectrum at detune
equal to zero, light green curve is measured data and black curve is fitted data. (d)
Linewidth from fitting(marks) and calculation(solid lines), this shows the linewidth
exchange.

EIT is firstly found as being a quantum interference effect that permits the

propagation of light through an otherwise opaque atomic medium [34]. Studying

MIT would extend the concept of EIT and allow us have a better understanding of

energy exchange between cavity photons and magnon. With the advancement of EIT

physics extending to MIT, EIT like behavior provided the opportunity for narrow

band transmission and light slowing effect at room temperature [35].
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4.3 Strong Coupling

The strong coupling implies coherent dynamics between the photon and the

magnon, such as avoided crossing in dispersion and Rabi-like oscillations in time

domain. Two degenerated mode repelling each other near resonance in spectrum

mapping (Fig.18(a)) and the fitting result as well as the calculation of matrix model

is shown in Fig.18(b) which indicate a good agreement. In order to achieve this

coupling regime, the coupling of CMP needs to be greater than damping of both

cavity and magnon (g > γm, γc). The bias voltage was set to 0.64 V which apparently

blow the tuning point 2.4V shown in Fig.15(a,b). We can clearly see a avoided crossing

from spectrum mapping given in Fig.18(a). In most of previous works, the damping

of photon cavity is a constant under different magnetic field. On the contrary, the

damping rate of the microwave cavity in our device setup is changing under different

applied H fields. At low H field blow 1045 Gs, the cavity mode is not visible and when

H field is over 1050 Gs, the cavity mode become clear on spectrum. The dissipation

rates was determined as γa/2π = 20.3 MHz at 1040 Gs and γa/2π = 1.2 MHz at 1110

Gs. The area of the resonance peak has increased which means the feedback loop

is gradually being tuned on during this process. Further study is need to determine

weather this phenomenon is given rise by presence of magnon or simply the magnetic

field.
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Figure 18: Characterize strong coupling in A-P-M device (a) Spectrum mapping of
strong coupling. (b) Resonant peak from fitting result(marks) and matrix calcu-
lation(solid lines). (c) Spectrum at detune equal to zero, the marker in orange is
experiment data and the black curve is the fitting result using Eq.79. (d) Inverse fast
Fourier transform of experiment data in (c), from the time domain signal we can see
the Rabi oscillation with dispassion.

The coupling strength at ∆ = 0 was determined to be g/2π = 6.5 MHz, and

damping to be γc/2π = 4.0 MHz and γm/2π = 0.33 MHz (Fig.18(c)). The coopera-

tivity has risen to C ≈ 32. The time domain signal was obtained by using inverse fast

Fourier transformation (iFFT) on spectrum at ∆ = 0 (shown in Fig.18(d)) whose

oscillation period corresponds to coupling strength g given by
π

g
= 76.9 ns which

corresponds to the time period around 80 ns. Clearly, the cavity energy experiences

periodic oscillation aside from the exponential decay, demonstrating the coherent en-

ergy exchange between photon and magnon. Therefore, we have shown that by simply

tuning the voltage which mean increase the number of feedback photons the coupling

strength has been changed.

Strong coupling has been proved to have many applications in information pro-

cessing such as transducers that can interconnect different systems such as photonics,

mechanics, and microwave circuits [26] and device for quantum control and measure-

ment of the magnon [32]. Strong coupling in this feedback-coupled cavity brings

potential applications for information processing in spintronics.
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4.4 Cavity Magnon Quintuplet

Figure 19: The waterfall plot of magnon quintuplet, magnetic field is increasing up
directional. Five modes can be observed which can be well explained by the theory
we introduced.

When the bias voltage was set as V = 7 V with the same YIG position as previous

experiments. The feedback loop get fully ”turned on” and the system has reached

to a new coupling regime. Waterfall plot of spectra was shown in Fig.19 with the

magnetic field increased from bottom to top, it is clear that each spectrum have five

resonance modes evolving with the external magnetic field. This coupling regime with

five modes is named as ”cavity magnon quintuplet”.

Spectrum mapping is given in Fig.20(a) where the dispersion relation with fitting

and theory model calculation (section 2.3.3) is shown in Fig.20(b) which is in excellent

agreement. Fig.20(c) gives the spectrum at ∆ = 0 where magnon quintuplet retards
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to magnon triplet due to Ω− = Ω+. The linewidth of five different mode was fitted as

Fig.20(d) in which we can observe a difference in magnitude. The center mode (at ωc)

corresponding to the feedback cavity has a very narrow linewidth and independent of

external field while the other modes corresponds to CMPs (at ωc ±Ω− and ωc ±Ω+)

have a relative large linewidth and they still present exchange properties similar to

the matrix model.

Figure 20: Magnon quintuplet (a) Spectrum mapping with frequency in y axis and
H field as x axis, we can clearly see five modes when ∆ 6= 0 and three modes in
center near resonance. (b) Peak positions read out from measured S21 (markers) and
calculation result (lines) using model in Eq.77. (c) Spectrum at ∆ = 0 which gives a
magnon triplet due to Ω− and Ω+ degenerate. (d) The linewidth of each mode use
fitting, the red marks and blue marks represents side modes are black corresponds to
the central mode.
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4.5 Voltage Dependent Feedback

Figure 21: Waterfall plot at ∆ = 0 under different bias voltages with fixed YIG
sphere. Spectrum is MIT at V = 0, Strong coupling at V = 0.64V and magnon
quintuplet at V ≥ 2V . The Rabi frequency Ωf rise with the increase of applied
voltage.

This experiment was performed at ∆ = 0 by tuning the H field. The spectra

were obtained under different bias voltage from 0 to 7V shown in the waterfall plot

in Fig.21 and the Rabi frequency at ∆ = 0 is found to be dependent on the voltage.

To derive a quantitative description, the Rabi frequency can be simplified to:

Ω± = Ωf = Ω0

√
1 + 2f 2 (81)

which means that the two sets of dress states have the same Rabi splitting. Therefore,

they produce the same triplet at ωc and ωc ± Ωf as observed in Fig.20(c). The Rabi

frequency of this CMP system is dependent only on the coupling strength Ω0 of

MIT and feedback factor f . Rabi frequencies under different voltages are plotted

in Fig.22(a), the relation between Ω and V can be described by a empirical linear
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formula:
Ωf

Ω0

= 1 + k · V (82)

Where Ω0 = 15.24 MHz come from measurement and k = 5.56× 10−2 is a empirical

parameter. Combining Eq.82 and Eq.81 gives the voltage dependent feedback factor:

f =

√
k · V +

k2V 2

2
(83)

Where k is the same empirical parameter in Eq.82 with the same value. The measured

data and fitting is shown in Fig.22 which shows to be in excellent agreement with our

hypothesis.

Figure 22: Voltage dependent feedback: (a) Rabi frequencies plotted as a function of
bias voltage, there is a approximately a linear relation. (b)The measured(red squares)
and calculated(curve) ratio of Rabi frequencies Ωf/Ω0 plotted as a function of Gain.

In this experiment, since the position of the YIG sphere is fixed and the mi-

crowave magnetic field that is felt by the magnon remains the same under different

voltages. By assuming the procession angle of the collective spin or the number of

CMP is a constant, tuning the voltage on the feedback loop will increase the number

of feedback photons n in Eq.73 which will eventually result in the feedback factor f

increasing. Therefore, this voltage controlled feedback brings an additional degree of

freedom to the study CMP coupling.

4.6 Distance Dependent Feedback

Another series of experiment where performed to determine the relationship be-

tween the distance of the YIG and the feedback factor. During this set of mea-

surements, the distance d of the YIG sphere was changed from 0.2 mm to 2.0 mm

by tuning the X-Y-Z stage, the spectrum under V =0 and V =7V was collected to
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determine Ω0 and Ωf and the waterfall plot is shown in Fig.23. With the distance

increasing, Ω0/2π in MIT dropped from 11 MHz to 3.7 MHz and Ωf decreased from

15 MHz to 7.7 MHz.

Figure 23: Waterfall plot of MIT in (a) and magnon triplet (MT) in (b), three sets
of values for Ω0/2π and Ω0/2π are given. Rabi frequency for both MIT and MT have
a tendency to decrease as distance d increase.

From these spectra, Ω0 is acquired by using fitting formula Eq.79 and Ωf by

reading out the peak positions. These results are plotted in Fig.24(a). From Eq.81,

the feedback factor is given by:

f =

√
(Ωf/Ω0)2 − 1

2
(84)

Calculated feedback factors f are plotted as a function of distance d, we found

that the feedback factor has a linear relation with distance d (Fig.23 (b)):

f = 0.35 · d+ 0.55 (85)

39



Figure 24: (a) Rabi frequency Ω0 (red circle) and Ωf (green circle) extracted from
Fig.23, both quantities decreased when d increase. (b) Feedback factors calculated
using Eq.84, the linear dependence on distance can be clearly observed, the dashed
line is linear fitting of data. (c) Schematic diagram of side mode (top) of magnon
triplet and side mode lineshape under different distance d (bottom). The linewidth
we get increase with distance d which corresponds to mean lifetime of CMP. (d) The
linewidth of the side mode plotted as a function of the square of the coupling strength
(Ω0/2π)2, data points (markers) were fitted by a linear relation.

Furthermore, we analysed the linewidth ∆ω of the side mode of magnon triplet

which correspond to the mean lifetime τ = 1/(2π∆ω) of CMP. The linewidth was

plotted as a function of the coupling strength (Ω0/2π)2 which is linearly fitted as:

∆ω

2π
= −4.21THz−1 · (Ω0

2π
)2 + 0.797MHz (86)

Therefore, we have determined the relationship between the feedback factor and the

distance. Furthermore, the relation of the linewidth ∆ω of the side mode and the

square of coupling strength Ω0 at ∆ = 0 is approximately a linear relation has been

found. Based on this assumption, the mean lifetime of the CMP as a function of
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(Ω0/2π)2 can be guessed to be:

τ =
1

a(Ω0/2π)2 + b
(87)

Where a and b are fitting parameters. Mean lifetime τ is expected to decrease with

square of coupling strength Ω0. In this experiment, the feedback factor f has been

proved to be dependent on the distance d. The linewidth ∆ω and the mean lifetime

τ with respected to the coupling strength Ω0 has been discussed. This may provide

potential application on further development of cavity magnon polariton and spin

dynamics.

5 Conclusion

A novel design of active cavity with the A-P design provides us with a powerful

tool for the study of cavity spintronics and spin dynamics. In this research, we

have studied ferromagnetic material interacting with a feedback loop cavity in the

newly developing field of cavity spintronics. Coupling of cavity photons and magnons

can be explained by both classical and quantum theory. Strong interaction between

these two modes can generate CMP which have an anti-crossing behavior and the

quintuplet that has been recently observed. It is clear that classical and quantum

model can describe the anti-crossing with similar results, while the quintuplet can

only be explained by quantum theory currently. Based on a theoretical explanation

of magnon quintuplet, we defined the feedback factor f using Rabi frequencies of the

A-P-M system.

We have demonstrated a highly tuneable coupling system on a planar structure

at room temperature. Usually the coupling strength characterized by Rabi frequency

is independent of the photon numbers in cavity. However, in this work, by tuning

the bias voltage which results in an increase in the feedback photons, the coupling

strength as well as the coupling regime are changed. The relation of f as a function

of voltage V have been derived and agreed well with experiment data. Furthermore,

data presented has clearly demonstrated the coupling strength Ωf is also dependent

on position of YIG sphere. This approach is tuning the distance d between A-P cavity

and magnon which result drop of the number of polaritons to change the f . We found

f has a linear relation with d. In addition to this, we found the linewidth of CMP

mode has an approximately linear relation with the square of the coupling strength

Ω2
0.
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Based on this work, the understanding of the coupling between magnons and

cavity photons with feedback loop has been improved, and this experiment setup

provides the potential to integrate to on-chip device that use voltage and distance

control the information procession properties in spintronics.

6 Future Work

For the theory of cavity magnon quintuplet we introduced in section 2.3.3, it

can only explain the dispersion relation of this coupling regime but can do nothing

for the damping of the five modes, especially the central mode of the active cavity.

However, through the fitting data plotted in Fig.20(d), the properties of the linewidth

revolution is still able to be seen. The next step is developing this current quantum

theory by adding damping terms which could take a lot of efforts.

In this research, we have explored MIT, strong coupling and cavity magnon

quintuplet in three different coupling regimes. However there is still another coupling

regime called Purcell effect where the damping of the ferromagnetic material dominate

(κa < g < κm) which has yet to be determined. Purcell effect will enhance the decay

of the photon cavity due to the coupling between a high damping material. Magnetic

nano-particles, Permalloy sphere are good candidates for this further research instead

of YIG sphere. Interesting phenomena that differs from passive cavity can be expected

due to the presence of feedback loop and it can also improve our understanding of

this A-P-M device.
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[1] D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nature
materials, vol. 15, no. 10, p. 1061, 2016.

[2] K. Tolpygo, “Physical properties of a rock salt lattice made up of deformable
ions,” Ukr. J. Phys, vol. 53, pp. 93–102, 2008.

[3] K. Huang, “Lattice vibrations and optical waves in ionic crystals,” Nature, vol.
167, no. 4254, p. 779, 1951.

[4] D. Mills and E. Burstein, “Polaritons: the electromagnetic modes of media,”
Reports on Progress in Physics, vol. 37, no. 7, p. 817, 1974.

[5] E. L. Albuquerque and M. G. Cottam, Polaritons in periodic and quasiperiodic
structures. Elsevier, 2004.

[6] L. Landau, “On the theory of the dispersion of magnetic permeability in ferro-
magnetic bodies,” Phys. Z. Sowjet., vol. 8, pp. 153–169, 1935.

[7] J. Griffiths, “Anomalous high-frequency resistance of ferromagnetic metals,” Na-
ture, vol. 158, no. 4019, p. 670, 1946.

[8] E. Zavoisky, “Spin magnetic resonance in the decimetre-wave region,” J. Phys.
USSR, vol. 10, pp. 197–198, 1946.

[9] ——, “Paramagnetic absorption in some salts in perpendicular magnetic fields,”
Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, vol. 16, no. 7, pp. 603–606,
1946.

[10] C. Kittel, “On the theory of ferromagnetic resonance absorption,” Physical Re-
view, vol. 73, no. 2, p. 155, 1948.

[11] A. Chumak, V. Vasyuchka, A. Serga, and B. Hillebrands, “Magnon spintronics,”
Nature Physics, vol. 11, no. 6, p. 453, 2015.

[12] F. Bloch, “Zur theorie des ferromagnetismus,” Zeitschrift für Physik, vol. 61, no.
3-4, pp. 206–219, 1930.
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