Level Attraction in Coupled Metamaterials
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Metamaterials: Level attraction using an active metamaterial:

. Metamaterials have certain engineered structures that are carefully designed by researchers, and thus physical
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This equation of motion can be rewritten in a matrix by assuming the solution as a periodic form. Therefore, the . S N 23— T
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. The behavior of the coupled system can be solved analytically using the matrix model, for the system in Fig.1.
The coupling term 1s real because of the spring. In this case, the eigenvalues of the system can be solved in the
frequency domain and plotted in Fig.3 (left) which shows a repulsion behavior.

« Coupling dispersion was acquired by placing the active metamaterial at the same position 1in Fig.5 (a) , the level attraction can
be clearly observed in the mapping when the applied voltage 1s tuned. Moreover, the measured data and calculated curve are in
good agreement. Therefore, the level attraction has been realized in metamaterials.

Level attraction 1n passive metamaterials:
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demonstrated the dissipative coupling in a cavity-magnon system due to cavity Lenz effect [2]. The recent

AT . . lated using the theoretical model we introduced in Eqn.(3). This shows the level attraction in passive metamateri-
emergence of level attraction in diverse systems reveals its inherent nature in coupled systems.
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